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Abstract

The problem of the di�usion of load from a ®ber to an embedding matrix is considered in a three dimensional
context. It is assumed that the ®ber-matrix interface allows sliding, which is assumed to be proportional to the

interface tangential stress. The close-form solution is obtained for generic loads applied to the ®ber, and the case of
a concentrated force is studied in detail. The main e�ects of the interface sti�ness, such as avoiding the stress
singularities and increasing the length of the zone of in¯uence, are discussed and illustrated by some numerical

examples. Successively, the problem of the broken ®ber is considered and solved with the same method as the
previous case.
Three di�erent situations are discussed: no interaction between ®bers, very close neighboring ®bers and an

intermediate case. It is shown that both problems have the same equations apart from a given function which plays
the role of the constitutive equation and which characterizes the considered model. The e�ect of the neighboring
®bers on the interfacial stress is discussed and it is shown that it has a non-monotonic dependence on the distance
between the ®bers. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problems related to the di�usion of load from an elastic bar to its surrounding matrix arise in the
®eld of ®ber-reinforced composites and in many other branches of engineering. Since the pioneering
work of Melan (1932), a great deal of attention has been paid to the determination of interface stresses
(Grigolyuk and Tolkachev, 1987), responsible for many characteristic phenomena such as interface
delamination, breaking of ®bers and so on.
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Melan has considered two closely related cases. The ®rst consists in the load-transfer problem from an
in®nite edge-sti�ener to a semi-in®nite elastic sheet. In the second problem, the string is embedded in an
all-around in®nite matrix. Koiter (1955) has solved the problem of a semi-in®nite ®ber glued to an
in®nite matrix, while Benscoter (1949) has analyzed the same case but with a ®nite length ®ber. The
®nite length ®ber attached to the boundary of a semi-in®nite sheet has been considered by Erdogan and
Gupta (1971), contrary to Goodier and Hsu (1954) which have studied the case of a ®ber normal (and
no longer parallel) to the boundary of the semi-in®nite matrix.

All the above mentioned works deal with plane problems and rely on four basic hypotheses: (i) the
sheet is supposed to be in a state of generalized plane stress; (ii) the ®ber is regarded as a one-
dimensional continuum without sti�ness bending; (iii) the bond between bar and sheet is assumed to be
perfect (i.e. guaranteeing continuity of stress and displacements); and (iv) it occurs along a (theoretical)
line.

Passing to the three-dimensional load-transfer problems, the latter hypothesis must be removed
because it leads to meaningless integral equations. It is therefore necessary to take into account the
actual radius of the ®ber, and the possibility of obtaining closed form solutions is strongly reduced. We
cite only the solutions given by Muki and Sternberg (1969), which solved the case of a single in®nite
®ber embedded in an elastic space and loaded by a concentrated force, and by Ford (1973), which
considers the case of an in®nite broken ®ber.

To overcome the previous di�culty, Muki and Sternberg (1969, 1970, 1971) proposed an
approximatedÐthough very accurateÐmodel capable of simplifying the mathematical formulation of
the problem. Roughly speaking, they regard the original bar as made of two superimposed elastic ®bers,
the ®rst with the same characteristic as the matrix and treated in the framework of 3D elasticity, the
latter with an elastic coe�cient equal to the di�erence between those of the actual ®ber and of the
matrix, considered as a 1D continuum. The governing integral equation is obtained by imposing the
same averaged axial strain in the two ®ctitious bars.

A more drastic simpli®cation is the well-known shear lag model, proposed by Cox (1952), which
assumes that the ®ber is a 1D medium and that the matrix is subjected only to shear deformations.
Although highly approximated, it is currently used to describe several load-transfer problems arising in
the applications (Hull, 1981).

More recent contributions are due, for example, to Lee and Mura (1994a, b) and Pak and Saphores
(1991), who have obtained the numerical solution in the case of a ®nite length ®ber embedded in elastic
space and in elastic half-space.

We have seen that hypotheses (i) and (iv) are naturally removed passing from 2D to 3D. In this paper
we relax hypothesis (iii), while hypothesis (ii) seems to be acceptable if one considers the actual
dimension of the ®bers in practical applications. Our analysis is suggested by the observation of
Achenbach and his co-workers (Achenbach and Zhu, 1989, 1990; Choi and Achenbach, 1995) who have
noted how in many composites the bond between the ®ber and the matrix is not of a perfect kind and
allows sliding at the interface, even if continuity of stresses is guaranteed by equilibrium. This interface
is called a weak interface. The interface is sometimes deliberately weakened by coating the ®bers (Peters
et al., 1995) or by changing their surface treatment (Subramanian et al., 1996) in order to increase
ductility of ceramic matrix composites (Weitsman and Zhu, 1993).

Among the others, a widely used model of the weak interface is the so called `spring-layer model',
which assumes that the jump in displacement is proportional (through constants which characterize the
sti�ness of the interface) to the interface stress. This model was employed in many situations related to
micro-mechanics of composites, e.g. by Lene and Leguillon (1982), Benveniste (1985), Hashin (1990,
1991), Achenbach and Zhu (1989, 1990), Devries (1993). For a theoretical justi®cation and for a more
detailed study of the `spring-layer model' see Geymonat et al. (1999).

This work is devoted to the investigation of the e�ects of the interface sti�ness on the transmission of
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load from a ®ber to its surrounding matrix. This problem deserves some interest also in certain modern
applications of composites in civil engineering. As a matter of fact, there have recently been some
attempts to substitute the steel bars for composite bars in concrete. However, as the external peel of the
composite bar is made of a thin layer of matrix material, it naturally behaves like a weak interface.

The purpose of this paper is the determination of the stress distribution, in particular the ®ber-matrix
interface shear stress and the ®ber axial force. We have initially studied (section 2) the simplest case of
dilute concentration (Hashin, 1983), namely, the ®bers are far from each other and we can disregard
their reciprocal interactions. Therefore, the case of a single ®ber embedded in an in®nite elastic matrix
(Fig. 1) is considered. The solution is obtained for generic loads, and the cases of concentrated force
applied to the ®ber (section 2.1.) and of broken ®ber (section 2.2.) are analyzed in detail because of their
relevance in applications.

This problem is preliminary to the more realistic cases where the interactions between the neighboring
®bers are taken into account, which are discussed in the following sections 3 and 4. In section 3, we
employ the cylinder model, which is a reasonable approximation that permits actual computation of the
solution. In section 4, on the other hand, the shear lag model is used to determine the e�ects of
neighboring ®bers. Section 5 is devoted to the comparison between the di�erent models utilized in this
work, while Section 6 contains some conclusions that end the paper.

2. The case of a single ®ber embedded in the matrix

In this section, we will consider the case of a single ®ber weakly bonded to a surrounding elastic space
(Fig. 1). As in Mbanefo and Westmann (1990), we will consider the ®ber as a one-dimensional
continuum without transversal deformation and we will suppose perfect adherence in the direction

Fig. 1. The dilute concentration problem: a single ®ber embedded in an elastic space.
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orthogonal to the ®ber-matrix interface. In other words, only tangential sliding is allowed for and the
normal displacement of the matrix at the interface vanishes.

The matrix material is assumed to be isotropic and linearly elastic, with elastic constants m and n. The
axial Young modulus of the circular bar and the interface sti�ness, on the other hand, are denoted by E
and k, respectively. The matrix, the ®ber and the interface are homogeneous. In a circular cylindrical
coordinate system (r, y, z ), the problem is axially symmetric with respect to the axis of the ®ber, which
coincides with the z-axis. The axial displacement of the bar is denoted by U(z ), the interfacial stress by
t(z ) and the radial and longitudinal displacements of the matrix by ur(r, z ) and uz(r, z ), respectively. We
further denote u(z )=uz(R, z ), where R is the radius of the ®ber, and we note that the stresses are
continuous through the interface (by equilibrium), so that t(z ) is equal to trz(R, z ) and it is the
tangential stress applied to the ®ber.

As a consequence of the Mbanefo and Westmann hypotheses, at the interface r=R we have

ur�R, z� � 0, 8z 2� ÿ1,1�, �1a�

t�z� � k�u�z� ÿU�z��, 8z 2� ÿ1,1�: �1b�

Taking the Fourier transform fÃ(s )=f1ÿ1f(z )eisz dz (Sneddon, 1951) of (1) we obtain

ûr�R, s� � 0, 8s 2� ÿ1,1�, �2a�

t̂�s� � k�û�s� ÿ Û�s��, 8s 2� ÿ1,1�: �2b�

The non-vanishing stresses and displacements in the matrix can be expressed in terms of the Love
potential (Love, 1926, art. 188) as follows:

ur�r, z� � ÿ @
2f

@r@z
, �3a�

uz�r, z� � 2�1ÿ v�r2fÿ @
2f
@z2

, �3b�

trr�r, z� � 2m
@

@z

�
vr2fÿ @

2f
@r2

�
, �3c�

tyy�r, z� � 2m
@

@z

�
vr2fÿ 1

r

@f
@r

�
, �3d�

tzz�r, z� � 2m
@

@z

�
�2ÿ v�r2fÿ @

2f
@z2

�
, �3e�

trz�r, z� � 2m
@

@r

�
�1ÿ v�r2fÿ @

2f
@z2

�
, �3f�

where
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r2 � @ 2

@r2
� 1

r

@

@r
� @2

@z2

is the axisymmetric Laplacian operator. In the absence of body force, the function f(r, z ) is biharmonic,
i.e. H2H2f=0, in its domain (r, z )=]R,1[�]ÿ1,1[. The Fourier transforms of Eq. (3) are

ûr�r, s� � is
@f̂
@r

, �4a�

ûz�r, s� � 2�1ÿ v�r̂2
f̂� s2f̂, �4b�

t̂rr�r, s� � ÿ2mis
�
vr̂2

f̂ÿ @
2f̂
@r2

�
, �4c�

t̂yy�r, s� � ÿ2mis
�
vr̂2

f̂ÿ 1

r

@ f̂
@r

�
, �4d�

t̂zz�r, s� � ÿ2mis��2ÿ v�r̂2
f̂� s2f̂�, �4e�

t̂rz�r, s� � 2m
@

@r
��1ÿ v�r̂2

f̂� s2f̂�, �4f�

where

r̂2 � @ 2

@r2
� 1

r

@

@r
ÿ s2:

The function f̂�r, s� satis®es r̂2r̂2
f̂ � 0 on (r, s )=]R, 1[�]ÿ1, 1[. The general solution of this

equation is

f̂�r, s� � A�s�K0�j s j r� � B�s� j s j rK1�j s j r� � C�s�I0�j s j r� �D�s� j s j rI1�j s j r�, �5�
where Kn and In are the nth-order modi®ed Bessel functions (Abramowitz and Stegun, 1970, section 9).
The condition of bounded stress for r41 implies C(s )=D(s )=0, 8s$]ÿ1, 1[, while from Eq. (1a) it
follows

A�s� � ÿj s j RK0�j s j R�
K1�j s j R� B�s�, �6�

which gives the unknown stresses and displacements in terms of B(s ). The substitution of Eq. (6) in (5)
and (4) gives, in particular,

t̂�s� � t̂rz�R, s� � B�s�4m�1ÿ v� j s j3 K1�j s j R�, �7a�

û�s� � ûz�R, s� � B�s�s2K0�j s j R�
�
ÿ 4�1ÿ v� ÿ j s j RK0�j s j R�

K1�j s j R� � j s j RK1�j s j R�
K0�j s j R�

�
, �7b�

from which
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û�s� � t̂�s�R
m
g�j s j R�, �8�

where

g�x� � ÿ1
x

K0�x�
K1�x� ÿ

1

4�1ÿ v�
�
K0�x�
K1�x�

�2

� 1

4�1ÿ v� , x > 0: �9�

As we will see in the sequel, the function g(x ), which relates the Fourier transforms of the stress and
displacement of the matrix at the interface, plays a central role in obtaining the solutions of di�erent
problems on the basis of the solution obtained in this section. Therefore, in some sense, it characterizes
the model of ®ber reinforcement we are considering.

To obtain the solution of the problem, it remains to consider the equilibrium equation of the bar

d2U�z�
dz2

� 2

ER
t�z� ÿ dE��z�

dz
� f �z�

E
� 0, 8z 2� ÿ1,1�, �10�

where f(z ) and E�(z ) are the applied body-force density (per unit volume) and the imposed axial strain
(for example, the strain due to the increase of the temperature), respectively. On applying the Fourier
transform to Eq. (10), one arrives at

ÿs2Û�s� � 2

ER
t̂�s� � isÊ��s� � 1

E
f̂�s� � 0, 8s 2� ÿ1,1�: �11�

Summarizing, the resolvent system is given by Eqs. (2b), (8) and (11), namely,24 1 ÿk �k
ÿg�j s j R��R=m� 1 0
ÿ2=�ER� 0 s2

3524 t̂�s�
û�s�
Û�s�

35 �
24 0
0
isÊ��s� � f̂�s�=E

35 �12�

from which

t̂�s� � ÿ ixEÊ��x=R� � Rf̂�x=R�
E

kR
x2 ÿ E

m
x2g�j x j� � 2

, �13a�

û�s� � ÿR
m
g�j x j� ixEÊ

��x=R� � Rf̂�x=R�
E

kR
x2 ÿ E

m
x2g�j x j� � 2

, �13b�

Û�s� �
�
1

k
ÿ R

m
g�j x j�

�
ixEÊ��x=R� � Rf̂�x=R�
E

kR
x2 ÿ E

m
x2g�j x j� � 2

, �13c�

where x=Rs. For later use, we also de®ne z=z/R. The inverse Fourier transforms
f(z )=(2p )ÿ1f1ÿ1fÃ(s )eÿisz ds (Sneddon, 1951) of Eq. (13) give the solution of the problem for every f(z )
and E�(z ).

We report the expressions of t̂rr�R, s� and t̂zz�R, s�, which are directly concerned with the problems of
resistance of the ®ber-reinforced composites. In fact, the possibility of normal debonding depends on the
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magnitude of the normal stress at the interface, which can be computed by inverting its Fourier
transform, given by

t̂rr�R, s� � ÿi
�
2xg�j x j� � sign�x�K0�j x j�

K1�j x j�
�

ixEÊ��x=R� � Rf̂�x=R�
E

kR
x2 ÿ E

m
x2g�j x j� � 2

: �14�

The failure of the matrix, on the other hand, strongly depends on the normal stress in the z direction at
r=R. By using Eqs. (4) and (13), its Fourier transform can be expressed in the form

t̂zz�R, s� � 2ix
�
g�j x j� ÿ v

2�1ÿ v�
1

j x j
K0�j x j�
K1�j x j�

�
ixEÊ��x=R� � Rf̂�x=R�
E

kR
x2 ÿ E

m
x2g�j x j� � 2

: �15�

2.1. The concentrated force applied to the ®ber

When the ®ber is loaded by a concentrated force applied at z= 0, we have fÃ(s )=P/(pR 2) and Ê��s� �
0: In these circumstances Eqs. (13)±(15) supply, after some simpli®cations,

t�z� � ÿ P

p2R2

�1
0

cos�xz�
E

kR
x2 ÿ E

m
x2g�x� � 2

dx, �16a�

u�z� � ÿ P

mp2R

�1
0

g�x� cos�xz�
E

kR
x2 ÿ E

m
x2g�x� � 2

dx, �16b�

U�z� � ÿ P

Ep2R

�1
0

�
E

kR
ÿ E

m
g�x�

�
cos�xz�

E

kR
x2 ÿ E

m
x2g�x� � 2

dx, �16c�

trr�z� � ÿ P

p2R2

�1
0

�
2xg�x� � K0�x�

K1�x�
�

sin�xz�
E

kR
x2 ÿ E

m
x2g�x� � 2

dx, �16d�

tzz�z� � P

p2R2

�1
0

�
2xg�x� ÿ v

1ÿ v

K0�x�
K1�x�

�
sin�xz�

E

kR
x2 ÿ E

m
x2g�x� � 2

dx: �16e�

It is possible to show that the integrals (16a±c) are absolutely and uniformly convergent. Focusing on
t(z ), this implies that the interfacial stress is Lipschitz-continuous. Furthermore, t(z ) is bounded
everywhere and vt(z )v < tmax=vt(0)v. The boundedness is lost when k 4 +1, because the interfacial
stress becomes (logarithmically) unbounded for z4 0, as is also shown, in a slightly di�erent model, by
Muki and Sternberg (1969).

The previous discussions show that the weak interface avoids the interface stress singularities. This
property may be used in practice to prevent interfacial debonding, and in some cases k can be utilized as
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a design parameter to optimize the mechanical properties of the composite. For example, it is su�cient
to choose the interfacial sti�ness k in such a way that tmax is lower than its failure value. In this respect,
an important role is played by the function tmax=tmax(k ), which is given by

tmax �k� � P

p2R2

�1
0

dx
E

kR
x2 ÿ E

m
x2g�x� � 2

, �17�

and which is drawn in Fig. 2 for a glass-epoxy composite (in this case the elastic modulus of the ®ber is
E= 68.954 GPa, while the matrix is characterized by n=0.34 and m=2.59 GPa (Tandon, 1995), so that
E/m=26.62. These values will be employed in all the following numerical examples). Note that,
according to the previous discussions, tmax(k ) tends to in®nity as k4+1. For the same materials, we
have reported in Fig. 3 the interface tangential stress t(z ). This function is always negative, strictly
increasing for z > 0 and vanishing for vzv 4 1. When k is high, the solution has a peak in a
neighborhood of the force application point, while in the opposite case it is spread on the `whole'
interface.

The radial and longitudinal stresses in the matrix at the interface (see Eq. (16d and e)) are depicted in
Figs. 4 and 5, respectively. For every value of k, they are initially increasing (in absolute value), they
reach a maximum at, say, ẑ � ẑ�k� > 0 and then they tend to zero far from the force application point.
Again, for high values of interface sti�ness the stresses are `concentrated' around z=0, while they are
spread when k is low.

Figs. 4 and 5 show that trr(z ) is one order of magnitude lower than tzz(z ) and t(z ). This suggests
that, except for the special cases of interfaces with very low normal resistance, the damage mechanism
of normal debonding at the interface should not occur in the present case. The other aspect emphasized
by Figs. 4 and 5 is that the maximum normal stresses are not attained at z=0, as in the case k 41,
but rather for a given ẑ > 0 depending on k. Thus, one e�ect of the weak interface is that possible
failure of the matrix may start at points di�erent from the force application point. This observation is
based on qualitative reasoning, but can be stated rigorously introducing failure criteria for the matrix.
This analysis, however, is not within the scopes of the present paper.

The axial force in the bar is obtained by the constitutive relation N�z� � EpR�dU=dz�, and therefore it
is given by

Fig. 2. The function tmax(k ).
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N�z� � P

2

8<:ÿ sign�z� � 4

p

�1
0

sin�xz�
E

kR
x3 ÿ E

m
x3g�x� � 2x

dx
9=;: �18�

In absolute value, it ranges from P/2 (for z=0) to zero (for vzv41) (Fig. 6). It follows that at a certain
distance from z=0 the e�ects of the applied load become negligible. We de®ne the (nominal) length of
the zone of in¯uence the segment for which the axial load is greater than 5% of the applied force. Thus,
the semi-length �z is obtained by solving N��z� � 0:05P: The numerical solution of this equation for the
glass-epoxy composite is depicted in Fig. 7(a). As expected, the length of the zone of in¯uence is
inversely proportional to the interface sti�ness.

2.2. The broken ®ber

In polymeric ®ber-reinforced composites, the external load is carried almost entirely by the ®bers, and
it is very common that they break, usually as a consequence of some extra load due to unavoidable
imperfections. When one ®ber breaks, however, its axial force is transferred to the matrix, which
increases its stress and which may fail if there is no extra resistance. Thus, it is of practical interest to
study the extra-stress induced in the matrix as a consequence of the breaking of ®bers. This problem is

Fig. 3. The function t(z ) for di�erent values of the interface sti�ness.

Fig. 4. The function trr(z ) for di�erent values of the interface sti�ness.
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dealt with in this section, where we consider the case of a single broken ®ber embedded in the matrix.
The interaction with the unbroken neighboring ®bers will be analyzed in the next sections.

As in (Mbanefo and Westmann, 1990), we suppose that the matrix is loaded by a given constant
strain Ezz � ~E at in®nity. Using the linearity of the problem, however, we can consider the case of the
®ber subjected to a concentrated jump of displacement D � U�0�� ÿU�0ÿ� > 0 with vanishing strains
(and stresses) at in®nity. This gives a non-zero compressive force N�0�� � N�0ÿ� � ÿN�D�: To obtain
the solution in terms of the actual applied strain ~E , it is then su�cient to equate N(D) with ~EEpR2 (the
axial force in the uniform case), obtaining D � D�~E�, and adding to this solution the constant strain
solution.

In the present case we have fÃ(s )=0, Ê��s� � D, and inverting Eqs. (13)±(15) we obtain

t�z� � ÿkD
2

8<:sign�z� ÿ 2

p

�1
0

�
ÿ E

m
x2g�x� � 2

�
sin�xz�

E

kR
x3 ÿ E

m
x3g�x� � 2x

dx
9=;, �19a�

u�z� � D
p

�1
0

�
ÿ E

m
g�x�x

�
sin�xz�

E

kR
x2 ÿ E

m
x2g�x� � 2

dx, �19b�

Fig. 5. The function tzz(z ) for di�erent values of the interface sti�ness.

Fig. 6. The axial load in the ®ber for di�erent values of the interface sti�ness.
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U�z� � D
2

8<:sign�z� ÿ 4

p

�1
0

sin�xz�
E

kR
x3 ÿ E

m
x3g�x� � 2x

dx
9=;, �19c�

trr�z� � DE
pR

�1
0

�
2x2g�x� � x

K0�x�
K1�x�

�
cos�xz�

E

kR
x2 ÿ E

m
x2g�x� � 2

dx, �19d�

tzz�z� � ÿDEpR
�1
0

�
2x2g�x� ÿ v

1ÿ v
x
K0�x�
K1�x�

�
cos�xz�

E

kR
x2 ÿ E

m
x2g�x� � 2

dx: �19e�

The interface tangential stress, which is depicted in Fig. 8 for the glass-epoxy composite, is, for z > 0,
negative, increasing, with minimum t(0)=ÿkD/2 and vanishes for z 4 1. Furthermore, when the
interface is very soft (low values of k ), the interface tangential stress is `almost' constant, while it rapidly
decreases to zero in the case of very sti� interfaces.

Remark. The problems treated in sections 2.1. and 2.2. are not independent. In fact, the following

Fig. 7. The semi-length of the zone of in¯uence versus the interface sti�ness in the case (a) of concentrated force (section 2.1.) and

(b) of broken ®ber (section 2.2.).

Fig. 8. The interface stress t(z ) for the glass-epoxy composite.
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relations hold:

t�z� � ÿEpRD
P

dtcf�z�
dz

, �20a�

u�z� � ÿEpRD
P

ducf�z�
dz

, �20b�

U�z� � ÿD
P
Ncf�z�, �20c�

N�z� � 2Ep2R3D
P
tcf�z�, �20d�

trr�z� � ÿEpRD
P

dtrr, cf�z�
dz

, �20e�

tzz�z� � ÿEpRD
P

dtzz, cf�z�
dz

, �20f�

where tcf(z ), ucf(z ), Ncf(z ), trr,cf(z ) and tzz,cf(z ) denote the quantities related to the problem of
concentrated force applied to the ®ber (section 2.1.). The relations (20) are a consequence of the fact
that the known term in Eq. (10) is ÿdE�(z )/dz+f(z )/E, and therefore to apply E�(z ) is equivalent to
apply the ®ctitious force f(z )=ÿE dE�(z )/dz. Thus, we may use Eq. (20) and the numerical examples of
section 2.1. to obtain the solutions of the present problem for the glass-epoxy composite.

Eq. (20e and f) and the ®gures of section 2.1. show that both the radial and longitudinal normal
stresses trr(z ) and tzz(z ) are even functions and change sign in the positive z-axis for z � ẑ�k�: The radial
stress is initially a compression, and becomes a tension only for large z. Thus, normal interface
debonding cannot occur at the ®ber breaking point. The longitudinal normal stress, on the other hand,
is tension for z < ẑ�k� and compression for z > ẑ�k�: Furthermore, both trr(z ) and tzz(z ) become
(logarithmically) unbounded for z 4 0 (see Eq. (19d and e)). In particular, the unboundedness of tzz(z )
(and the fact that it is positive for z 4 0) shows that the crack of the ®ber may propagate within the
matrix. This phenomenon, which has been studied, e.g. by Case et al. (1995), adds to the other well-
known damage mechanism consisting in ®ber-matrix sliding delamination, which has been investigated,
for example, by Mbanefo and Westmann (1990).

To calculate the length of the zone of in¯uence and to obtain the solution in terms of ~E, we must
compute the axial force in the bar, which is given by (see Eqs. (20d) and (16a))

N�z� � ÿ2ERD
�1
0

cos�xz�
E

kR
x2 ÿ E

m
x2g�x� � 2

dx: �21�

The semi-length �z of the zone of in¯uence is obtained by solving N��z)=0.05N(0) and it is illustrated in
Fig. 7(b). Qualitatively, it has the same behavior as the corresponding curve for the concentrated force,
apart from the fact that it is much more inclined, showing a stronger dependence of the zone of
in¯uence on the interface sti�ness.
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Finally, by using Eq. (21) we can easily compute the function D � D�~E� that gives the solution in terms
of the applied strain ~E:

D � ~E
pR
2

1�1
0

dx
E

kR
x2 ÿ E

m
x2g�x� � 2

: �22�

It follows that the actual axial force in the bar is given by

~N�z� � ~EEpR2

�1
0

�1ÿ cos�xz�� dx
E

kR
x2 ÿ E

m
x2g�x� � 2�1

0

dx
E

kR
x2 ÿ E

m
x2g�x� � 2

� ~EEpR2

�
1ÿ tcf�z�

tcf�0�
�
: �23�

3. The cylinder model

The dilute concentration hypothesis previously employed is no longer acceptable when there are many
®bers embedded in the matrix. In this case, the reciprocal interactions between neighboring ®bers cannot
be neglected, and we need an improved model to describe the mechanical behavior of the composite.
The density of the ®ber is commonly measured by the volume fraction

Vf � vol�fibre�
vol�fibre� � vol�matrix� : �24�

In practical applications it is frequent to have Vf=0.65 6 0.75, which is very near to the maximum
theoretical density Vf30.907 obtained for triangular packing of touching ®bers.

The microscopical characterization of the composite is not possible, because experiments show a great
complexity in the distribution of the ®ber within the matrix (Subramanian et al., 1996). To overcome

Fig. 9. The hexagonal arrays of ®bers and the cylinder model.
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this di�culty, we suppose a statistically homogeneous (Hashin, 1983) behavior of the material, namely,
the composite behaves like an ordered one with the same Vf . The simplest ordered distributions are
those with square or hexagonal (Fig. 9) arrays of ®bers. The latter, in particular, is often preferred
because it maintains the transversal isotropy and because it shows a better agreement with experiments.

We have simpli®ed the problem to that of the hexagonal cell periodically repeated. However, in this
form the problem cannot be solved analytically, and another commonly used simpli®cation is required.
We approximate the six neighboring ®bers (around the considered one) by a concentric annular ring
made of the same material (Fig. 9). The external ring is linked to the central ®ber by another annular
ring made of the same material as the matrix. This approximation is known as the cylinder model, and it
is widely used in the literature of composites (see, for example, Tandon, 1995 and Case et al., 1995). It
should be noted that this model neglects the interactions with distant ®bers and the non-uniformity with
respect to the angular variable y.

As suggested by Tandon (1995), there are two di�erent approaches allowing for the determination of
the cylinder model free parameters r (the radius of the matrix ring) and d (the width of the external
ring) in terms of micro-mechanical parameters R and Vf of the original composite. In both cases it is
assumed that the external ring has the same area as the (part) of the six ®bers related to the central one
(see Fig. 9), namely, 6� (1/3)� pR 2=2pR 2. This leads to the ®rst equation

2R2 � 2rd� d 2: �25�
The two approaches di�er for the second equation to be added to Eq. (25). In the ®rst case, the same
®bers distance is assumed in the model and in the hexagonal array, namely, r=lÿR. Being
R=l � ����������������������

Vf

���
3
p
=�2p�p

, we have therefore, after some simpli®cations,

r
R
�

�������������
2p

Vf

���
3
p

s
ÿ 1, �26a�

d

R
� 1ÿ

�������������
2p

Vf

���
3
p

s
�

����������������������������������������������
2p

Vf

���
3
p ÿ 2

�������������
2p

Vf

���
3
p

s
� 3

vuut : �26b�

In the second case, on the other hand, it is assumed that the cylinder model has the same density Vf as
the original composite. This gives

r �
����������������������������
3
���
3
p

2p
l2 ÿ 2R2

s
, �27�

which, added to Eq. (25), furnishes

r
R
�

���������������
3

Vf

ÿ 2

r
, �28a�

d

R
�

������
3

Vf

r
ÿ

���������������
3

Vf

ÿ 2

r
: �28b�

The di�erence between Eqs. (26) and (28) is about 10% on average, and therefore it is not negligible.
We guess that Eq. (26) is better for higher values of Vf , while for lower values of Vf the expression (28)
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should be preferable. However, the best way to choose between the two models is the comparison
between experiments.

We continue to use the Mbanefo and Westmann hypothesis both for the central ®ber and for the
external ring. To simplify the exposition, we denote with U1(z ) and U2(z ), respectively, their
longitudinal displacements, and we de®ne u1(z )=uz(R,z ) and u2(z )=uz(r, z ). The interface stresses, on
the other hand, are denoted by t1(z ) and t2(z ).

The Love potential function in the matrix is given by Eq. (5). The boundary conditions ur(R, z )=0
and ur(r, z )=0 make it possible to obtain two of the four unknowns A(s ), B(s ), C(s ) and D(s ) in terms
of the others:

A�s� � B�s� j s j RK0�j s j R�I1�j s j r�ÿ j s j rK0�j s j r�I1�j s j R�
I1�j s j R�K1�j s j r� ÿ I1�j s j r�K1�j s j R�

�D�s�ÿ j s j RI0�j s j R�I1�j s j r�� j s j rI0�j s j r�I1�j s j R�
I1�j s j R�K1�j s j r� ÿ I1�j s j r�K1�j s j R� , �29a�

C�s� � B�s� j s j RK0�j s j R�K1�j s j r�ÿ j s j rK0�j s j r�K1�j s j R�
I1�j s j R�K1�j s j r� ÿ I1�j s j r�K1�j s j R�

�D�s�ÿ j s j RI0�j s j R�K1�j s j r�� j s j rI0�j s j r�K1�j s j R�
I1�j s j R�K1�j s j r� ÿ I1�j s j r�K1�j s j R� : �29b�

Substituting Eq. (29) in Eq. (4) we obtain uÃ1(s ), uÃ2(s ), t̂1�s� and t̂2�s� in terms of B(s ) and D(s ).
Rearranging, one arrives at the relation between uÃ1(s ), uÃ2(s ) and t̂1�s�, t̂2�s�:

û1�s� � R

m
ft̂1�s�a�j s j R, j s j r� � t̂2�s�b�j s j R, j s j r�g, �30a�

û2�s� � r
m
ft̂1�s�b�j s j r, j s j R� � t̂2�s�a�j s j r, j s j R�g, �30b�

where the two unsymmetrical functions a(x, y ) and b(x, y ) are de®ned as

a�x, y� � 1

4�1ÿ v� ÿ
1

x

K0�x�I1� y� � I0�x�K1� y�
K1�x�I1� y� ÿ K1� y�I1�x� �

1

x2
ÿ �K0�x�I1� y� � I0�x�K1� y��2

4�1ÿ v��K1�x�I1� y� ÿ K1� y�I1�x��2
, �31a�

b�x, y� � 1

x2

1

K1�x�I1� y� ÿ K1� y�I1�x�

�
1

x
�K0�x�I1� y� � I0�x�K1� y�� ÿ y

x2
�K0� y�I1�x� � I0� y�K1�x��

4�1ÿ v��K1�x�I1� y� ÿ K1� y�I1�x��2
, x, y > 0:

�31b�

In the cylinder model, the external ring is not loaded and therefore its equilibrium equation is given by

d2U2�z�
dz2

ÿ r
ER2

t2�z� � 0, �32�

or, in the Fourier transform space,
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ÿs2Û2�s� ÿ r
ER2

t̂2�s� � 0: �33�

At the external interface r=r, the stress and the displacements verify the interface condition
t̂2�s� � k2�Û2�s� ÿ û2�s��, where k2 is the sti�ness of the external interface, which may be di�erent from
k1, the sti�ness of the internal interface. Substituting this equation in Eq. (33) we obtain

û2�s� � ÿt̂2�s�
�
1

k2
� r

ER2

1

s2

�
, �34�

and successively, by using Eq. (30b),

t̂1�s�b�j s j r, j s j R� � ÿt̂2�s�
�
a�j s j r, j s j R� � m

rk2
� m

ER2

1

s2

�
: �35�

Substituting from Eq. (35) in Eq. (30a) we ®nally obtain the equivalent of Eq. (8) for this problem:

û1�s� � t̂1�s�Rm gcyl

�
j s j R; r

R
,
m
E
,

m
rk2

�
, �36�

where

gcyl

�
x;

r
R
,
m
E
,

m
rk2

�
� a

�
x, x

r
R

�
ÿ

b
�
x, x

r
R

�
b
�
x
r
R
, x

�
a
�
x
r
R
, x

�
� m

E

1

x2
� m

rk2

, x > 0: �37�

The equilibrium equation and the interface condition for the central ®ber remain unchanged with
respect to the case of a single ®ber (see Eqs. (11) and (2b)). It follows that the solution of the case
considered in this section is simply obtained by replacing g(x ) with gcyl(x ) and k with k1 in Eqs. (13)±
(15), or in Eq. (16) for the case of a ®ber loaded by a concentrated force or in Eq. (19) for a broken
®ber. Thus, the solution of di�erent ®ber-reinforced models can be obtained simply by changing the
function g(x ) appearing in the `basic' expressions of the solution. It follows that this function describes
(and summarizes) the mechanical properties of the composite. Furthermore, the di�erent cases have the

Fig. 10. The function tmax(k ) for di�erent values of the ratio r/R.
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same mathematical structure, so that, roughly speaking, they have qualitatively the same properties and
the main di�erences should be only quantitative.

To illustrate the e�ect of the neighboring ®bers, we have reported in Fig. 10 the maximum interface
shear in the case of the concentrated force applied to the ®ber (see Eq. (17)) for a glass-epoxy composite
with k1=k2=k. Fig. 10 shows that for, say, E/(kR ) > 5, the neighboring ®ber relaxes the maximum
interface stress, which halves on average passing from the two limit cases. For the opposite case, say for
E/(kR ) < 5, the maximum interface stress is increased, although this is not well recognizable in Fig. 10
due to graphical approximations. Thus, the e�ect of neighboring ®bers strongly depends on the interface
sti�ness. In any case, we note that for approximately r/R > 10 (and for every value of E/(kR )) the
neighboring ®bers have no practical in¯uence on the interface stress.

For the same material and load as those of Fig. 2 and for di�erent values of k and r, Figs. 11±14
show the redistribution of the t(z ) along the interface. The previously observed strong dependence of
the interface stress on r and k is again highlighted by comparison of Figs. 11 and 12 (large values of k )
with Figs. 13 and 14 (low values of k ). In the latter case, in the initial window 0 < z < 5, ÿt(z )
increases monotically with r and in the ®rst approximation we have t(z, r1)/t(z, r2)3tmax(r1)/tmax(r2),
i.e. the knowledge of tmax (r ) (Fig. 10) and t(z, r41) (Fig. 3) permits to determine t(z, r ) for `every'
r. This property, however, cannot hold for every z, because the equilibrium relation P � 4pR2

�1
0 t�z� dz

and the monotony and positivity of the curves ÿt(z ) show that the inequality ÿt(z, r1) < [ÿt(z, r2)], r2
< r1, must be satis®ed at least for some z su�ciently large.

Fig. 11. The function t(z ) for E/(kR )=0.001 and for di�erent values of r/R.

Fig. 12. The function t(z ) for E/(kR )=1 and for di�erent values of r/R.
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A di�erent situation occurs in the case of Figs. 11 and 12. In these circumstances, in fact, the non-
monotonic character of the t(z ) with respect to r is directly observable in the initial window 0< z< 5.
According to Fig. 10, we have that ÿt(0, r1) < [ÿt(0, r2)] for r2 < r1, i.e. the maximum shear is
inversely proportional to r. This characteristic reverts for large values of z. For example, in the cases of
Figs. 11 and 12, the functions ÿt(z ) are increasing with r for z>2.

Summarizing the previous observations, we have seen that the functions ÿt(z ) are monotonically
increasing with respect to r for (i) large k and large z and (ii) low k and low z, monotonically decreasing
in the other cases.

4. The shear lag model

The shear lag model (Cox, 1952) is a simpli®cation of the cylinder model which consists in assuming
that the matrix has only constant shear deformation in the radial direction. This model is characterized
by the relation

Fig. 14. The function t(z ) for E/(kR )=1000 and for di�erent values of r/R.

Fig. 13. The function t(z ) for E/(kR )=50 and for di�erent values of r/R.
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t1�z� � m
u2�z� ÿ u1�z�

rÿ R
: �38�

It is worth remarking that Eq. (38) shows that the matrix actually behaves like a weak interface of
sti�ness m/(rÿR ).

In the present case the solution can be easily obtained in the physical space. For example, the
interface tangential stress in the case of concentrated force applied to the ®ber is given by

t�z� � ÿ P

R2

��������
3=a
p
6p

eÿjzj
�����
3=a
p

, �39a�

where

a � E

k1R
� E

m

�
r
R
ÿ 1

�
� E

rk2
: �39b�

However, in order to make a comparison between the cases treated in sections 2 and 3, we prefer to
look for the solution in the Fourier transform space. Indeed, using the equilibrium and external
interface equations we arrive at

û1�s� � t̂1�s�Rm gsl

�
j s j R; r

R
,
m
E
,

m
rk2

�
, �40�

where

gsl

�
x;

r
R
,
m
E
,

m
rk2

�
� 1ÿ r

R
ÿ m

rk2
ÿ m

E

1

x2
: �41�

Again the solution is obtained by replacing g(x ) with gsl(x ) and k with k1 in Eqs. (13)±(15), or in Eq.
(16) for that case of ®ber loaded by a concentrated force and in Eq. (19) for a broken ®ber.

5. The limit cases of the cylinder model

In the cylinder model, when r increases (i.e. when Vf decreases) the interaction between the ®bers
decreases, and when r tends to in®nity (Vf tends to zero), the dilute concentration hypothesis should be
exact. On the other hand, when the ®bers are very close to each other, the `width' of the matrix is low
and the shear tends to become constant, i.e. the shear lag model should be a good approximation in this
case. To mathematically justify these heuristic considerations, we must prove that the following two
limits hold:

lim
r4R

gcyl

�
x;

r
R
,
m
E
,

m
rk2

�
� g�x�, �42a�

lim
r4R

gcyl

�
x;

r
R
,
m
E
,

m
rk2

�
� lim

r4R
gsl

�
x;

r
R
,
m
E
,

m
rk2

�
� ÿm

E

1

x2
ÿ m

Rk2
: �42b�

To prove the ®rst limit, we note that for x41 the Bessel functions admit the asymptotic developments
(Abramowitz and Stegun, 1970, section 9.7)

S. Lenci, G. Menditto / International Journal of Solids and Structures 37 (2000) 4239±4260 4257



K0�x� � K1�x� � eÿx
�������
p
2x

r
� � � � , �43a�

I0�x� � I1�x� � ex��������
2px
p � � � � , �43b�

which implies that

lim
y41 a�x, y� � g�x�, lim

y41 a� y, x� � 0, �44a�

lim
y41 b�x, y� � 0, lim

y41 b� y, x� � 0: �44b�

Eq. (44) proves the ®rst limit (42a). To compute the second limit, on the other hand, we note that, for r
4R,

a
�
x, x

r
R

�
� ÿa

�
x
r
R
, x

�
� ÿb

�
x, x

r
R

�
� b

�
x
r
R
, x

�
�

�
�
1ÿ 1

2�1ÿ v�
�

1

x2�1ÿ r=R� � � � � �
b

1ÿ r=R
� � � � , �45�

where the relation K0�x�I1�x� � K1�x�I0�x� � 1=x has been employed. Substituting from Eq. (45) into Eq.
(37) we obtain, for r4R,

gcil

�
x;

r
R
,
m
E
,

m
rk2

�
� b

1ÿ r=R
ÿ

ÿ
�

b

1ÿ r=R

�2

ÿ b

1ÿ r=R
� m

E

1

x2
� m

Rk2

� � � � � ÿm
E

1

x2
ÿ m

Rk2
� � � � : �46�

6. Conclusions

The in¯uence of the interface sti�ness in the di�usion of load from a ®ber to a surrounding matrix
has been analyzed. It has been shown that, contrarily to the classical case of perfect bonding, the weak
interface avoids stress singularities and permits a better redistribution of the tangential interface stress.
In particular, it increases the length of the zone of in¯uence.

The general solution has been obtained in closed form, and the cases of single force applied to the
®ber and of broken ®ber have been investigated in detail. In both cases, the analytical results are
discussed and illustrated by means of numerical examples. Three di�erent models have been considered:
the dilute concentration hypothesis (no interaction between ®bers), the cylinder model and the shear lag
model (low distance between neighboring ®bers or, equivalently, high values of the volume fraction Vf ).
In both cases, the problems have the same governing equations, and the solutions of one problem can
be obtained on the basis of the solution of another problem by a simple shrewd substitution of a given
function appearing in the expression of the solution. Furthermore, it has been shown that the dilute
concentration and the shear lag are the two (opposite) limit cases of the cylinder model when the
distance between the ®ber becomes in®nite and vanishes, respectively.
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